DOI:10.13350/j.cjpb.220205

• 149 •

•论著•

云南省3株柯萨奇A组16型病毒全基因组序列分析*

冯昌增1,刘昕蓓2,张名1,许丹菡1,徐炽1,何云龙1,马绍辉1**

(1.中国医学科学院北京协和医学院医学生物学研究所,云南省重大传染病疫苗研发重点实验室,云南昆明 650118;2.云南大学医学院)

【摘要】 目的 分析柯萨奇病毒 A 组 16 型(coxsackievirus A16,CV-A16)分离株全基因组特征。 方法 使用人横纹 肌肉瘤细胞(human rhabdomyosarcoma,RD)、非洲绿猴肾细胞(Vero)和人胚肺二倍体细胞(human embryonic lung diploid fibroblasts,KMB17)从 2019 年云南手足口病患者粪便标本中分离 CV-A16 毒株。采用 RT-PCR 扩增其全基因组, 测序并通过生物信息学方法对其全基因序列、系统进化和基因重组进行分析。 结果 共分离到 3 株 CV-A16 毒株,均 为 Vero 细胞分离株。VP1 系统进化分析表明,K106/YN/CHN/2019 和 K39/YN/CHN/2019 属于 B1 基因亚型的 B1b 分支,K23/YN/CHN/2019 属于 B1 基因亚型的 B1a 分支。在全基因组核苷酸序列上,K106/YN/CHN/2019 和 K39/ YN/CHN/2019 与中国 CV-A16 分离株相似性高,K23/YN/CHN/2019 与国外 CV-A16 分离株相似性较高,其中,与澳 大利亚分离株 C138/CHW/AUS/2016 之间的核苷酸相似性为 97.6%。基于 P1、P2 和 P3 的系统进化、全基因组同源性 和重组分析结果显示 CV-A16 在 5-UTR 及 P2、P3 区可能与肠道病毒 A 组多个其他血清型病毒发生过型间重组事件。

结论 2019年从云南省手足口病患者粪便标本中分离到3株 CV-A16,均为中国大陆流行基因型,为 CV-A16 的分子 流行病学研究提供了理论基础。

【文章编号】

1673-5234 (2022) 02-0149-05

【关键词】 柯萨奇病毒 A 组 16 型;全基因组序列;型间重组

【中图分类号】 R383.2

[Journal of Pathogen Biology. 2022 Feb; 17(2): 149-153, 158.]

【文献标识码】

Α

Analysis of whole genome sequence of three coxsackievirus A16 strains isolated from Yunnan Province, China FENG Chang-zeng¹, LIU Xin-bei², ZHANG Ming¹, XU Dan-han¹, XU Chi¹, HE Yun-long¹, MA Shao-hui¹ (1. Key Laboratory for Research and Development of Major Infectious Diseases Vaccine in Yunnan, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Yunnan Kunming, 650118, China; 2. School of Medicine, Yunnan University)^{***}

[Abstract] Objective To isolate Coxsackievirus A16 (CV-A16) strains from fecal samples of patients with hand-footmouth disease (HFMD) in Yunnan in 2019, and analyze their whole genome sequences and phylogenetic characteristics. Methods Three cell lines, human rhabdomyosarcoma (RD), green monkey kidney (Vero) and human embryonic lung diploid fibroblasts (KMB17), were used for viral isolation. The whole genome sequences were amplified by reverse transcription-polymerase chain reaction (RT-PCR) and sequenced using the Sanger sequencing method. The similarities of nucleotide and amino acid sequences were calculated using Geneious Prime 2020. 1. 2. Phylogenetic analysis was performed using the Neighbor-Joining method in MEGA 7.0. Simplot 3.5.1 was used to carry out SimPlot and Bootscan analyses. Results In the present study, 3 novel CV-A16 strains were isolated using Vero cells. The phylogenetic analysis based on the VP1 sequence showed that two of the strains (K106/YN/CHN/2019 and K39/YN/CHN/2019) belonged to B1b clade of subgenotype B1, while the K23/YN/CHN/2019 strain belonged to B1a clade of subgenotype B1. In whole genome,K106/YN/CHN/2019 and K39/YN/CHN/2019 shared high nucleotide similarities with the CV-A16 strains isolated from China. But, K23/YN/CHN/2019 had high nucleotide similarities with CV-A16 isolates outside of China, especially the highest identities with Australia strain C138/CHW/AUS/2016 (97.6%). The phylogenetic analysis based on the P1, P2 and P3, whole genome homology analysis and recombination analysis suggested that inter-serotypic recombination events may have occurred between the CV-A16 and some other serotypes of Enterovirus A in 5'-UTR P2 and P3. Conclusion In this study, 3 novel CV-A16 strains were isolated from stool samples of HFMD patients in Yunnan Province, all of which belonged to the dominant genotypes in mainland China. The results of the analysis of the whole genome sequence

作者】 马绍辉, E-mail: shaohuima70@126.com

【作者简介】 冯昌增(1984-),男,山东人,硕士,助理研究员,主要从事肠道病毒研究。E-mail:fengchangzeng@163.com 冯昌增和刘昕蓓为共同第一作者。

^{《【}基金项目】 云南省科技厅科技计划项目(No. 202002AA100009)。

and phylogenetic characteristics may provide laboratory data for further investigation of the prevalence, transmission and molecular evolution of CV-A16.

[Key words] Coxsackievirus A16; Whole genome sequence; Inter-serotypic recombination

手足口病 (Hand, foot and mouth disease, HFMD)主要影响人群为5岁以下儿童^[1]。2008年 HFMD 成为我国法定报告管理的丙类传染病,2009-2019年 HFMD 报告病例数连续 11 年超过 100 万,年 均近 200 万例,是病例数最多的丙类传染病。柯萨奇 病毒 A 组 16 型(Coxsackievirus A16, CV-A16) 和肠 道病毒 71 型(Enterovirus 71, EV-A71) 是引起 HFMD 的主要病原体^[2]。CV-A16 属于肠道病毒 A 组(Human type-A Enterovirus, HEV-A),于 1951 年 在南非首次分离鉴定^[3]。自此之后,CV-A16 相关的 HFMD 在世界范围内,尤其在包括马来西亚、新加坡、 越南和中国等在内的亚太地区多次暴发流行[4-7]。目 前,在 CV-A16 相关的疫苗研发和致病机制方面已取 得了一些进展,但至今尚无相关疫苗获批上市,亦未开 发出针对 CV-A16 的特异性抗病毒药物。因此,深入 开展 CV-A16 的病原学和分子流行病学研究对于 CV-A16 相关 HFMD 的预防和控制有十分重要的意义。 本研究从云南手足口病患者的粪便标本中分离到3株 CV-A16 毒株,获得了其基因组序列并通过生物信息 学方法对其序列同源性、系统发育特征等进行了分析。 可为 CV-A16 的分子流行病学、跨区域传播及防控相 关疾病等提供参考数据。

材料与方法

1 材料

1.1 标本 2019年云南手足口病患者的粪便标本 60份,来自昆明市儿童医院手足口病患儿,分离出 CV-A16毒株的 3 份粪便标本分别来自 3 名手足口病患儿。

 主要试剂和仪器 Axygen Body Fluid DNA/ RNA Miniprep Kit 购自爱思进生物技术有限公司(杭州); PrimeScript[™] One step RT-PCR Kit Ver.2 购自 TaKaRa(大连)公司。PCR 仪购自美国 Bio-Rad 公 司;二氧化碳恒温细胞培养箱购自美国 Thermo 公司。
方法

2.1 病毒分离培养 将采集的标本按照《手足口病预防控制指南(2009版)》制成粪便悬液,1500g离心20min,收集上清^[8]。过滤后分别接种到人横纹肌肉瘤细胞(human rhabdomyosarcoma,RD)、非洲绿猴肾细胞(Vero)和人胚肺二倍体细胞(human embryonic lung diploid fibroblasts,KMB17),盲传3代,使用倒置显微镜每天观察细胞状态,收集出现肠道病毒致细

胞病变效应(CPE)的分离物。

2.2 测序和型别鉴定 使用 Axygen Body Fluid DNA/RNA Miniprep Kit 从 CPE 阳性上清中提取病 毒 RNA。使用 PrimeScript[™] One-Step RT-PCR Kit Ver. 2,采用一步法 RT-PCR 扩增部分 VP1。引物 AN89:5'-CCAGCACTGACAGCAGYNGARAYNGG -3'和 AN88: 5'-TACTGGACCACCTGGNGGNAYR-WACAT-3'。扩增条件:55 ℃ 30 min,94 ℃ 5 min;94 ℃ 30 s,52 ℃ 30 s,72 ℃ 1 min,共 35 个循环;72 ℃ 5 min^[9]。扩增产物由昆明硕擎生物科技公司测序。使 用在线工具 Enterovirus Genotyping Tool Version 0. 1 (http://www.rivm.nl/mpf/typingtool /enterovirus/)对分离株的血清型进行鉴定。参考文献^[10]设计 引物并分段扩增出全基因组的各片段,使用 DNAStar7.1 中的 SeqMan 进行序列比对、拼接和组装,获得 全长基因组序列。基因组扩增和测序引物见表 1。

表 1 CV-A16 全基因组序列扩增和测序引物 Table 1 Primers for whole gene amplification and sequencing of CA16

more 1 - Finnes for Sine and human and redening of corre-				
	引物名称 Primar	引物序列(5-3)	引物位置 Site	
	Frimer	Sequence	Site	
	Ca161F	TTAAAACAGCCTGTGGGTTG	1-23	
	Ca161R	TAGTAGAGCACCTTGGTGAA	1320-1301	
	Ca162F	GACACAGATGCAACGGCAGT	1081-1100	
	Ca162R	ACATGAATGTCACCTCCARTG	2074-2054	
	Ca163F	GGCAGTCTACAATACTAGGT	2000-2019	
	Ca163R	GCAAGGTGYCGATTCACYAC	3398-3379	
	Ca164F	TAGCATTAGGACAGTAGGGA	3139-3160	
	Ca164R	GAGGCAGCAGACTGTTCAAG	4283-4264	
	Ca165F	GCRAAAGGGCTYGAGTGGAT	4120-4139	
	Ca165R	TCCACATTGGTCGRTGTTTCT	5229-5199	
	Ca166F	AGTGTRGATAGCGAGGAGGT	5143-5162	
	Ca166R	CCTCCAGRTATTCAGTGCC	6262-6244	
	Ca167F	CCAARTATGTGGGAAAYACC	6116-6135	
	Ca167R	GGTTATAACAAATTTACCCCC	7410-7392	

2.3 序列同源性、系统进化和重组分析 选取包括本研究分离株在内的国内外不同采集年份和基因型的CV-A16 毒株,分别基于 VP1、P1、P2 和 P3,使用MEGA7.0 的邻位拼接法(neighbor-joining method, NJ)构建系统发育树。使用 Geneious Prime 2020.1.2 进行同源性分析,包括3分离株相互之间、与 CV-A16 原型株之间以及与 GenBank 中高同源性毒株之间的核苷酸和氨基酸序列相似性。使用 Simplot 3.5.1 软件对其进行重组分析。

1 病毒分离与鉴定

在 Vero 细胞上共获得 3 份出现 CPE 的分离物, 分别来源于 3 份粪便标本。接种此 3 份粪便标本的 RD 和 KMB17 细胞盲传 3 代均未出现 CPE。使用部 分 VP1 片段序列进行型别鉴定,3 个分离株均为 CV-A16,分别命名为: K106/YN/CHN/2019(简称 K106)、K39/YN/CHN/2019(简称 K39)和 K23/ YN/CHN/2019(简称 K23)。经分段克隆、测序和拼 接后获得全基因组和全长 VP1 序列并提交 GenBank, 基因序列信息见表 2。

表 2 CV-A16 分离株全基因组与 VP1 序列及 GeneBank 登录号 Table 2 The sequences and GenBank accession numbers of complete geneme and VP1 of CV-A16 isolators in this study

genome and vii i of CV-Aio isolators in this study		
毒株名称	GenBank 登录号	
Strain	GenBank accession number	
K23/YN/CHN/2019	MT663411	
K39/YN/CHN/2019	MT663412	
K106/YN/CHN/2019	MT663413	
K23/YN/CHN/2019 VP1	MT663414	
K39/YN/CHN/2019 VP1	MT663415	
K106/YN/CHN/2019 VP1	MT663416	

2 系统进化和全基因组序列分析

基于全长 VP1 的系统进化树(图 1)显示,114 株 CV-A16 毒株可划分为 A 和 B 两个基因型。A 基因 型由 CV-A16 原型株 G-10 和安徽分离株 FY18 构成。 B 基因型可划分为 B1 和 B2 两个基因亚型,B1 进一步 分为 4 个分支:B1a-B1d,中国分离株均为 B1a 或 B1b 毒株。K39 和 K106 属于 B1b 分支,该分支由 49 个中 国分离株、1 个日本分离株和 1 个俄罗斯分离株组成。 K23 属于 B1a 分支,该分支包括 25 个中国分离株、6 个泰国分离株、7 个越南分离株、3 个澳大利亚分离株、 2 个日本分离株。在 B1a 内,包括 K23 在内的 7 株中 国分离株(3 株广东分离株、4 株云南分离株)与分离自 越南、泰国及澳大利亚的 CV-A16 毒株聚集成一个独 立的进化分支,而不是其它中国分离株。

基于全长 P1、P2 和 P3 的系统进化分析(图 2)显示,在 P1、P2 和 P3 区,K106 和 K39 与来自广东、云南等的中国 CV-A16 分离株聚集在同一分支,K23 与澳大利亚、美国及东南亚等地的 CV-A16 分离株在同一分支。不同于 P1 区,在 P2、P3 区,CV-A16 分离株在 进化上与 CV-A6 而非 CV-A16 原型株亲缘关系较近, P1、P2 和 P3 的系统进化树结构的差异提示 CV-A16 在 P2 和 P3 区域可能发生过重组。

在全基因组方面,K106、K39和K23与CV-A16 原型株G10的核苷酸序列相似性分别为79.0%、 78.8%和78.4%;三者相互之间核苷酸序列相似性为 87.8%-98.0%。此前的分离株中,与K106和K39相 似性高的均是中国 CV-A16 分离株,其中广东分离株 GD18-104/GD/South/CHN/2018-08-14 与此两分离 株的相似性分别为 97.9%和 98.0%,与 K23 核苷酸 序列相似性高的则是国外 CV-A16 分离株,其中,澳大 利亚分离株 C138/CHW/AUS/2016 与其相似性为 97.6%,澳大利亚分离株 C107/CHW/AUS/2016(97. 4%),越南分离株 CV-A16/HVN16.082_HAI_ PHONGVNM/2016(97.4%)、CV-A16/HVN17.120 _HAI_PHONGVNM/2017(96.5%)及 CV-A16/ HVN13.005_HAI_PHONGVNM/2013(95.8)与其 相似性也较高,中国分离株与 K23 之间核苷酸序列相 似性较低,其中较高的为分离自浙江的 CA16-193 (92.8%)。

Notes: The symbol "▲" indicates the novel CV-A16 isolates determined in this study; the symbol "●" indicates the CV-A16 prototype strain.

Fig. 1 Phylogenetic tree of 3 novel isolates and reference strains based on complete VP1 region

注:▲表示本研究 CV-A16 分离株,●表示 CV-A16 原型株。

图 2 CV-A16 分离株与参考毒株 P1、P2、P3 区系统进化树 Notes: The symbol "▲" indicates the novel CV-A16 isolates determined in this study; the symbol "●" indicates the CV-A16 prototype strain.

Fig. 2 Phylogenetic trees based on the P1, P2 and P3 coding sequences of 3 novel isolates and reference strains

K23 株基因组全长为 7398nt,包括一个 742nt 的 5-UTR,一个 74nt 的 3-UTR,两者之间为一个长度为 6582nt的开放阅读框。在 VP1、2B 和 3B 区段,与 K23 核苷酸相似性最高的分离株分别为云南 CV-A16 分离株 239-QJ-YN-CHN-2019-CV-A16(99.9%)、越 南 CV-A16 分离株 CV-A16/HVN16. 082_HAI_ PHONGVNM/2016(97.6%)和美国 CV-A16 分离株 USA/2015/CA-RGDS-1044(96.9%);在 VP4 和 3~-UTR, 为越南分离株 CV-A16/HVN17.120 HAI PHONGVNM/2017;在其它区段,为 C138/CHW/ AUS/2016(5'-UTR, VP2, VP3, 2A, 2C, 3A, P1, P2, 分别为:94.4%、98.4%、98.5%、98.2%、98.6%、 99.6%、98.0%、98.2%),或 C107/CHW/AUS/2016 (3C、3D、P3,分别为:97.6%、98.1%、98.1%),两者均 为 2016 年澳大利亚 CV-A16 分离株。CV-A2 分离株 CV-A2|42115|RUS|2011 在 5-UTR(91.8%),CV-A6 分离株 VN98 在 2A-2C(96.4%、96.3%、97.3%)、 3A-3D(98.8%、95.4%、96.0%、96.8%)和 P3 (96.8%)区, CV-A7 分离株 USSR 在 3'-UTR (97.2%)与 K23 之间的相似性很高,提示在这些区段 可能存在不同血清型间的重组事件。K23 与参考毒株 全基因组序列与 SimPlot 和 Bootscan 分析见图 3。

3 毒株重组分析

K23 与参考毒株全基因组序列 SimPlot 和 Bootscan分析见图 3。选取肠道病毒A组的 CV-A2、 CV-A3、CV-A4、CV-A6、CV-A7、CV-A10、CV-A12 和 CV-A16 的原型株及 CV-A2 分离株 CV-A2 | 42115 | RUS | 2011、CV-A7 分离株 USSR 进行 SimPlot 和 Bootscan分析^[3]。结果显示,K23 在 5⁻-UTR 及 P2、 P3 区可能与肠道病毒A 组多个其他血清型病毒发生 重组。

图 3 K23 分离株与参考毒株全基因组序列的 SimPlot 和 Bootscan 分析 Fig. 3 SimPlot and Bootscan analyses of the K23 with reference strains based on whole genome sequence

讨 论

CV-A16 是最早被鉴定与 HFMD 相关的肠道病 毒,并且其与 EV-A71 共流行是造成 HFMD 多次大 规模暴发的首要原因^[7,11-12]。重症病例主要由 EV-A71 引起,但研究表明 CV-A16 感染也可引起脑干脑 炎、心肌炎等严重疾病甚至死亡^[13-15]。因此,应加强对 CV-A16 的病原学和流行病学研究。

迄今,CV-A16尚未有统一的基因分型方式。获 得较多认可的分型方式由 Perera等提出,基于 CV-A16的 VP1 序列,将其划分为 A、B 两个基因型,其中 原型株 G10为 A 基因型,其余分离株均为 B 基因型, B 基因型可进一步划分为 B1和 B2 基因亚型,B1进一 步划分为 B1a、B1b和 B1c^[16-17]。Chen等^[18-19]将一些 分离株划分为 C和 D 基因型以及 B3 基因亚型。本研 究基于全长 VP1 序列对分离到的 3株 CV-A16分离 株和国内外 111株 CV-A16参考株进行了系统进化分 析,并参考文献^[3]对 114株 CV-A16 毒株进行了型别 划分。结果显示,分离株 K39和 K106 属于 B1b,K23 属于 B1a,均为中国大陆流行基因型。VP1 与 P1、P2、 P3 进化树显示 K23 与越南、泰国及澳大利亚的 CV-A16 毒株在进化上具有较近的亲缘关系。全基因组序 列分析显示 K23 与澳大利亚、越南等国家和地区的分 离株全基因组核苷酸序列相似性较高,而与中国 CV-A16 分离株相似性相对较低。表明 B1a 内的进化分 支很可能有一个共同的祖先。2019 年云南分离株 239-QJ-YN-CHN-2019-CV-A16 及 2016 年云南分离 株 LC412324/J77-YN-CHN-2016/China/2016 与 K23VP1 核苷酸序列相似性较高,说明该病毒近年来 在云南持续流行,有必要继续加强监测,以掌握其传播 和进化动态。

基因重组是一种重要的肠道病毒进化机制,在多 个血清型肠道病毒中频繁发生[22]。基因重组可能会 导致肠道病毒毒力及环境适应性的变化,从而引发严 重的公共卫生问题^[23-25]。深入研究基因重组在新的肠 道病毒流行株的出现和肠道病毒遗传进化中的作用对 于 HFMD 的防控具有重要意义。研究表明,目前流 行的 CV-A16 是一种重组肠道病毒,B1a 和 B1b 进化 分支的毒株在 5'-UTR 和非结构蛋白编码区 P2 和 P3 与肠道病毒 A 组的多种血清型病毒之间存在多重重 组^[3]。本研究序列分析表明 K23 在 5-UTR、P2 和 P3 区与其它血清型毒株存在较高的同源性;P1 和 P2、P3 系统进化树在结构上存在显著差异;进一步的重组分 析显示 K23 在 5'-UTR 的部分区域及 P2 和 P3 区与肠 道病毒 A 组其它多个血清型原型株之间的序列相似 性高于其与 CV-A16 原型株之间的序列相似性,提示 在以上区域可能发生过不同血清型间的重组。CV-A16 的 B1a 和 B1b 分支在传播过程中比较稳定,在非 编码区和 P2、P3 区未发生新的重组^[3]。因此推测 K23 与 B1a 其它毒株同样为重组毒株,但是相关重组 可能是发生于其进化分支的祖先毒株。

肠道病毒的跨地区传播以及不同血清型肠道病毒 的共循环和交替循环为其重组提供了条件,同时也给 肠道病毒相关 HFMD 的预防和控制带来挑战。因此 有必要进一步加强对 CV-A16 等肠道病毒的分子流行 病学和遗传进化特征的研究,为疫苗研发、疾病预防控 制提供理论基础。

【参考文献】

- Gui JJ, Liu ZF, Zhang TF, et al. Epidemiological characteristics and spatial-temporal clusters of hand, foot, and mouth disease in Zhejiang Province, China, 2008-2012 [J]. PLoS One, 2015, 10(9); e0139109.
- Mao QY, Wang YP, Yao X, et al. Coxsackievirus A16:epidemiology, diagnosis, and vaccine [J]. Hum Vaccin Immunother, 2014, 10 (2):360-367.

- [3] Chen XP, Tan XJ, Li J, et al. Molecular epidemiology of coxsackievirus A16: intratype and prevalent intertype recombination identified [J]. PLoS One, 2013, 8(12): e82861.
- [4] Shekhar K, Lye MS, Norlijah O, et al. Deaths in children during an outbreak of hand, foot and mouth disease in peninsular malaysiaclinical and pathological characteristics [J]. Med J Malaysia, 2005,60(3):297-304.
- [5] Ang LW, Koh BK, Chan KP, et al. Epidemiology and control of hand, foot and mouth disease in Singapore, 2001-2007 [J]. Ann Acad Med Singap, 2009, 38(2), 106-112.
- [6] Tu PV, Thao NTT, Perera D, et al. Epidemiologic and virologic investigation of hand, foot, and mouth disease, southern Vietnam, 2005 [J]. Emerg Infect Dis, 2007, 13(11):1733-1741.
- [7] Zhu Z, Zhu SL, Guo XB, et al. Retrospective seroepidemiology indicated that human enterovirus 71 and coxsackievirus A16 circulated wildly in central and southern China before large-scale outbreaks from 2008 [J]. Virol J, 2010, 7:300.
- [8] 卫生部.手足口病预防控制指南(2009版)[J].全科医学临床与教育,2010,8(2):125-127.
- [9] Nix WA, Oberste MS, Pallansch MA. Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens [J]. J Clin Microbiol, 2006, 44(8):2698-2704.
- [10] 马绍辉,潘玥,何春艳,等. 2008年柯萨奇病毒A组16型昆明分离株KMM08全基因组序列分析[J].中华流行病学杂志,2012, 33(2):220-225.
- [11] Zhao GL, Zhang X, Wang CM, et al. Characterization of VP1 sequence of coxsackievirus A16 isolates by bayesian evolutionary method [J]. Virol J, 2016, 13: 130.
- [12] Li LL, He YQ, Yang H, et al. Genetic characteristics of human enterovirus 71 and coxsackievirus A16 circulating from 1999 to 2004 in Shenzhen, People's Republic of China [J]. J Clin Microbiol, 2005, 43(8); 3835-3839.
- [13] Xu W, Liu CF, Yan L, et al. Distribution of enteroviruses in hospitalized children with hand, foot and mouth disease and relationship between pathogens and nervous system complications [J]. Virol J,2012,9:8.
- [14] Wang CY, Li LF, Wu MH, et al. Fatal coxsackievirus A16 infection [J]. Pediatr Infect Dis J, 2004, 23(3): 275-276.
- [15] Chen L, Yang H, Feng QJ, et al. Complete genome sequence of a coxsackievirus al6 strain, isolated from a fatal case in shenzhen, southern china, in 2014 [J]. Genome Announc, 2015, 3 (2): e00391-15.
- [16] Perera D, Yusof MA, Podin Y, et al. Molecular phylogeny of modern coxsackievirus A16 [J]. Arch Virol, 2007, 152(6):1201-1208.
- [17] Zhang Y, Wang DY, Yan DM, et al. Molecular evidence of persistent epidemic and evolution of subgenotype B1 coxsackievirus A16-associated hand, foot, and mouth disease in China [J]. J Clin Microbiol, 2010, 48(2):619-622.
- [18] Chen L, Yao XJ, Xu SJ, et al. Molecular surveillance of coxsackievirus A16 reveals the emergence of a new clade in mainland China [J]. Arch Virol, 2019, 164(3):867-874.

- [1] No authors listed. Brucella in Raw Milk Prompts Health Warning in Texas[J]. JAMA,2017,318(16):1533.
- [2] Franco MP, Mulder M, Gilman RH, et al. Human brucellosis[J]. Lancet Infect Dis, 2007, 7(12):775-786.
- [3] de Figueiredo P, Ficht TA, Rice-Ficht A, et al. Pathogenesis and immunobiology of brucellosis: review of *Brucella*-host interactions[J]. Am J Pathol,2015,185(6):1505-1517.
- [4] Cho C, Goto M. Spinal Brucellosis [J]. N Engl J Med, 2018, 379 (17):e28.
- [5] Akdeniz H, Irmak H, Anlar O, et al. Central nervous system brucellosis:presentation, diagnosis and treatment[J]. J Infect, 1998, 36(3):297-301.
- [6] Alavi SM, Alavi L. Treatment of brucellosis: a systematic review of studies in recent twenty years[J]. Caspian J Intern Med, 2013, 4(2):636-641.
- [7] 金柯,王晓娟,关鸿志,等. 二代测序在中枢神经系统布鲁菌感染 中的应用[J]. 中华临床感染病杂志,2020,13(3):195-198.
- [8] 中华人民共和国卫生部. 布鲁氏菌病诊疗指南(试行)[J]. 传染 病信息,2012,25(6):323-324.
- [9] Buzgan T, Karahocagil MK, Irmak H, et al. Clinical manifestations and complications in 1028 cases of brucellosis: a retrospective evaluation and review of the literature[J]. Int J Infect Dis, 2010.14(6):e469-478.
- [10] Guven T, Ugurlu K, Ergonul O, et al. Neurobrucellosis: clinical and diagnostic features[J]. Clin Infect Dis, 2013, 56(10): 1407-1412.
- [11] Veeraraghavan B, Amladi A, Arumugam A, et al. Brucella melitensis isolate VB700 chromosome I, complete sequence. NC-BI[EB/OL]. (2019-10-5). https://www.ncbi.nlm.nih.gov/ nuccore/CP044983.1/.2019. VB.
- [12] Habeeb YK, Al-Najdi AK, Sadek SA, et al. Paediatric neurobrucellosis; case report and literature review [J]. J Infect, 1998, 37

[19] Wang JY, Teng Z, Chu W, et al. The emergence and spread of one

[20] Hassel C, Mirand A, Farkas A, et al. Phylogeography of coxsack-

[21] Chen P, Wang HY, Tao ZX, et al. Multiple transmission chains of

[22] Lukashev AN. Role of recombination in evolution of enteroviruses

[J]. Emerg Microbes Infect, 2018, 7(1):131.

2017,91(18):e00630-17.

 $(118) \cdot 23 - 31.$

coxsackievirus A16 genogroup D novel recombinant strain that

caused a clustering HFMD outbreak in Shanghai, China, 2016

ievirus A16 reveals global transmission pathways and recent e-

mergence and spread of a recombinant genogroup [J]. J Virol,

coxsackievirus A4 co-circulating in China and neighboring coun-

tries in recent years: phylogenetic and spatiotemporal analyses

based on virological surveillance [J]. Mol Phylogenet Evol, 2018

(1):59-62.

- [13] Pappas G, Akritidis N, Bosilkovski M, et al. Brucellosis[J]. N Engl J Med, 2005, 352(22), 2325-2336.
- [14] Jiao LD, Chu CB, Kumar CJ, et al. Clinical and laboratory findings of nonacute neurobrucellosis[J]. Chin Med J (Engl),2015, 128(13):1831-1833.
- [15] Singh SK, Hasbun R. Neuroradiology of infectious diseases[J]. Curr Opin Infect Dis, 2021, 34(3):228-237.
- [16] Mergen B.Sarici AM, Baltu F.et al. An unusual presentation of sixth nerve palsy:neurobrucellosis[J]. GMS Ophthalmol Cases, 2019(9): 13.
- [17] Obiako OR, Ogoina D, Danbauchi SS, et al. Neurobrucellosis-a case report and review of literature[J]. Niger J Clin Pract, 2010, 13(3):347-350.
- [18] Gul HC, Erdem H, Bek S. Overview of neurobrucellosis: a pooled analysis of 187 cases[J]. Int J Infect Dis, 2009, 13(6): e339-343.
- [19] Khan MZ, Zahoor M. An overview of brucellosis in cattle and humans, and its serological and molecular diagnosis in control strategies[J]. Trop Med Infect Dis, 2018, 3(2):1-14.
- [20] Wu M, Cui R, Li F, et al. Extensive Intraspinal Hypermetabolism Caused by Neurobrucellosis Shown on 18F-FDG PET/ CT[J]. Clin Nucl Med, 2020, 45(9):722-724.
- [21] 中华医学会微生物学与免疫学分会临床微生物学组,宏基因组 高通量测序技术应用于感染性疾病病原检测中国专家共识[J]. 中华检验医学杂志,2021,44(2):107-120.
- [22] Simner PJ, Miller S, Carroll KC. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases[J]. Clin Infect Dis, 2018, 66 (5):778-788.

【收稿日期】 2021-10-02 【修回日期】 2022-01-14

[J]. Rev Med Virol, 2005, 15(3): 157-167.

- [23] Zhang Y, Wang JT, Guo WS, et al. Emergence and transmission pathways of rapidly evolving evolutionary branch C4a strains of human enterovirus 71 in the Central Plain of China [J]. PLoS One, 2011, 6(11):e27895.
- [24] Shang PC, Misra S, Hause B, et al. A naturally occurring recombinant enterovirus expresses a torovirus deubiquitinase [J]. J Virol, 2017, 91(14): e00450-17.
- [25] Noisumdaeng P. Sangsiriwut K. Prasertsopon J. et al. Complete genome analysis demonstrates multiple introductions of enterovirus 71 and coxsackievirus A16 recombinant strains into Thailand during the past decade [J]. Emerg Microbes Infect, 2018, 7 (1):214.

【收稿日期】 2021-08-24 【修回日期】 2021-11-18