DOI:10.13350/j. cjpb. 240405

论著。

牛结核分枝杆菌 BfrB 蛋白生物信息学分析及 多克隆抗体制备*

史超1,2,刘素平1,2,张伟1,2,魏铭清1,2,孙志华1,2,周霞1,2,王震1,2**,张辉1,2** (1. 石河子大学动物科技学院,新疆石河子 832003;2. 新疆生产建设兵团动物疾病防控重点实验室)

【摘要】 目的 旨在预测和分析牛结核分枝杆菌(Mycobacterium bovis)BfrB蛋白的结构和潜在功能,并进行克隆表达 及多克隆抗体的制备,为新型疫苗、诊断靶点等的开发提供理论基础。 方法 利用生物信息学软件预测分析 BfrB 蛋 白的生物信息学特征,克隆其编码基因并与原核表达载体 pET32a 连接,构建重组表达载体并利用 IPTG 诱导表达,镍柱 亲和层析法纯化重组 BfrB 蛋白, SDS-PAGE 和 Western blot 验证分析重组 BfrB 蛋白,以该蛋白免疫新西兰大白兔制备 结果 BfrB 蛋白含有 181 个氨基酸,分子式为 C903 H1405 N255 O276 S6,理论分子质量为 多克隆抗体,并测定其效价。 20.442 ku,无信号肽和跨膜结构域,是一种定位于细胞质的亲水性的储铁蛋白。该蛋白有 3 个固定无序结构域、15 个磷 酸化位点、16个甲基化位点和2个乙酰化位点,无糖基化位点。其二级结构中α螺旋占70.01%,延伸链占4.42%,β-折 角占 3.87%,无规则卷曲占 21.55%,三级结构与二级结构预测结果一致,空间结构(四级结构)为 24 个亚单位(三级结 构)组成的聚合物。BfrB蛋白含有 9 个 B 细胞抗原表位、7 个 CD4⁺ T 细胞抗原表位和 3 个 CD8⁺ T 细胞表位。该蛋白 与牛结核分枝杆菌 BCG、结核分枝杆菌 H37Rv等的 BfrB蛋白亲缘关系较近,同源性高达 99%以上。与 BfrB蛋白存在 相互作用的蛋白有 Oxidase、rpsL、katG、hemH 等,其中 BfrB 蛋白与 Oxidase 蛋白之间的相互作用关系最强。成功克隆 BfrB蛋白编码基因,大小与预期相符,与表达载体 pET32a 连接后,经双酶切、测序验证表明重组表达载体 pET32a-BfrB 构建正确。IPTG诱导表达、纯化后获得条带单一、纯度较高的重组 BfrB 蛋白, Western blot 显示重组 BfrB 蛋白具有良 好的免疫原性,能被相应抗体识别。用该蛋白免疫新西兰大白兔能够诱导产生抗体,且其效价高达1:512 000。 结论

成功预测和分析了牛结核分枝杆菌 BfrB 蛋白的结构及功能,并获得 BfrB 蛋白及多克隆抗体,为后续该蛋白的研究奠 定理论基础,也为牛结核病的防控等提供参考依据。

【关键词】 牛结核分枝杆菌;BfrB蛋白;生物信息学分析;表达与纯化;分子对接

【文章编号】 1673-5234(2024)04-0395-10 【文献标识码】 A

[Journal of Pathogen Biology. 2024 Apr. ;19(4):395-404.]

Bioinformatic analysis and polyclonal antibody preparation of Mycobacterium bovis BfrB protein

SHI Chao^{1,2}, LIU Suping^{1,2}, ZHANG Wei^{1,2}, WEI Mingqing^{1,2}, SUN Zhihua^{1,2}, ZHOUXia^{1,2}, WANG Zhen^{1,2}, ZHANG Hui^{1,2} (1. College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China; 2. Key Laboratory of Animal Disease Prevention and Control, Xinjiang Production and Construction Corps) * **

[Abstract] Objective The aim of this study was to predict and analyze the potential structure and function of Mycobacterium bovis BfrB protein, and to cloned and expressed it, as well as prepared polyclonal antibody, provided a theoretical basis for the development of novel vaccines and diagnostic targets. Methods The bioinformatics characteristics of BfrB protein were predicted and analyzed by bioinformatics software, its coding gene was cloned and linked to the prokaryotic expression vector pET32a, the recombinant expression vector was constructed, and the expression was induced by IPTG. The recombinant BfrB protein was purified by Ni-NTA spin columns, and it was analyzed by SDS-PAGE and Western blot. Polyclonal antibody was prepared by immunizing New Zealand white rabbit with the recombinant BfrB protein, and its titer was determined. Results The BfrB protein consisted of 181 amino acids, with molecular formula $C_{903}H_{1405}N_{255}O_{276}S_6$, and theoretical molecular weight was 20. 442 ku, without signal peptide and transmembrane domain, it was a hydrophilic ferritin located in the cytoplasm. The BfrB protein had three intrinsic disordered domains, fifteen phosphorylation sites, sixteen methylation sites and two acetylation sites, without glycosylation sites. The secondary structure content of a-helix was 70.1%, extended strand was 4.42%, β-turn was 3.87% and random

王 震, E-mail: wzhen2018@shzu. edu. cn; 张 辉, E-mail: 898935319@qq. com

史 超(1997-), 男, 甘肃天水人, 硕士研究生, 研究方向: 人兽共患病致病机制与防控。E-mail: 1138337419@qq. com

[【]基金项目】 新疆生产建设兵团重点领域科技攻关项目(No. 2021AB012)。

coil was 21. 55%, and the tertiary structure was consistent with the predicted results of the secondary structure. The spatial structure (quaternary structure) was a polymer composed of 24 subunits (tertiary structure). BfrB protein had nine B cell epitopes, seven $CD4^+$ T cell epitopes and three $CD8^+$ T cell epitopes. The protein of *M. bovis* was closely related to BfrB proteins of *M. bovis BCG* and *M. tuberculosis* H37Rv, the homology was up to 99%. BfrB protein interacted with multiple proteins in Oxidase, rpsL, katG, hemH and others, in which the interaction between BfrB protein and Oxidase protein was the strongest. The BfrB protein coding gene was successfully cloned, and the size was consistent with the expectation. After connected with the expression vector pET32a, the recombinant expression vector pET32a-BfrB was correctly constructed by double enzyme digestion and sequencing. The recombinant BfrB protein with single band and high purity was obtained after IPTG induced expression and purification. Western blot showed that the recombinant BfrB protein had good immunogenicity and could be recognized by corresponding antibodies. Immunizing New Zealand white rabbit with this protein induced the production of antibodies, and its titer was as high as 1 : 512 000. **Conclusion** The structure and biological function of *M. bovis* BfrB protein were successfully predicted and analyzed, BfrB protein and polyclonal antibody were obtained, which laid a theoretical foundation for the subsequent study of the protein and also provided a reference for the prevention and control of bovine tuberculosis.

[Key words] Mycobacterium bovis; BfrB protein; bioinformatics analysis; expression and purification; molecular docking

牛结核分枝杆菌(Mycobacterium bovis)是结核分 枝杆菌复合群成员,也是导致牛结核病的主要病原体, 该病原体也可以感染人、家养动物(兔、猫、猪、狗、绵 羊、山羊等)以及多种野生动物(水牛、狮子、大象 等)[1]。牛结核病是一种慢性且具有传染性的疾病,感 染宿主后通过形成典型的肉芽肿、钙化和包膜,使病原 体适应宿主体内的恶劣条件,并通过多种机制调节宿 主免疫反应和逃避宿主免疫攻击,以便在宿主体内生 存。感染牛结核分枝杆菌后患病奶牛出现体重减轻、 生殖功能衰退、乳汁分泌减少等现象[2-3]。特别是在发 展中国家或经济落后地区,牛结核分枝杆菌是影响畜 牧业生产和发展的重要因素。另外,动物源性食品 (肉、血、牛奶等)中含有牛结核分枝杆菌且消毒不彻底 被人类食用后可造成人类感染并患结核病[4]。已有研 究表明,牛结核分枝杆菌也是导致人类感染而患结核 病的一个重要因素^[5]。因此,牛结核分枝杆菌在对人 类结核病防治造成额外负担的同时对世界公共卫生安 全构成潜在威胁^[6]。

铁是动物、植物和微生物生长的重要元素,该元素 作为多种酶的活性中心并且参与了呼吸、基因调控、 DNA 合成、氧气运输等多个生物过程^[7]。与大多数生 物体一样,结核分枝杆菌也需要铁元素作为酶辅助因 子来参与多种生物过程。因此,从宿主中获取和储存 铁元素对于结核分枝杆菌的生长、存活、致病性至关重 要^[8]。结核分枝杆菌中存在两种铁储存蛋白,即血红 素结合细菌铁蛋白(heme binding bacterioferritin A, BfrA)和非血红素结合细菌铁蛋白(nonheme binding bacterioferritin B,BfrB)^[9]。在低铁条件下将储存的 铁释放出来需要 BfrA 蛋白,而铁过量时,BfrB 蛋白将 游离铁离子以氧化铁形式储存起来,以防止游离铁过 量发生氧化应激而影响结核分枝杆菌的存活^[10]。另 外,在结核分枝杆菌抵御抗生素的过程中 BfrB 也发挥 了重要作用^[11]。总之,BfrA 蛋白和 BfrB 蛋白在结核 分枝杆菌存活、生长、毒力发挥和潜伏等过程中具有重 要作用。

鉴于铁元素对结核分枝杆菌的重要性,因此,本研 究以牛结核分枝杆菌 BfrB 蛋白为研究对象,通过对牛 结核分枝杆菌 BfrB 蛋白进行生物信息学预测分析、表 达纯化及多克隆抗体的制备,了解该蛋白的潜在生物 学功能,为牛结核病的预防和控制提供一定的理论支 持。

材料与方法

1 材料

1.1 主要试剂、菌株、载体及实验动物 大肠埃希菌 DE3 和 DH5α 感受态细胞、质粒小提试剂盒、DNA Marker II 均购自天根生化科技有限公司; pMD19-T Vector、限制性内切酶 Hind Ⅲ和 Xho I 均购自宝日 医生物技术(北京)有限公司;100 bp Ladder、Super Marker、2×Taq MasterMix 均购自康为世纪股份有 限公司;蛋白上样缓冲液、小鼠抗 His 单克隆抗体、兔 抗小鼠 IgG-HRP、山羊抗兔 IgG-HRP 均购自北京索 莱宝科技有限公司;预染蛋白 Marker(10~180 ku)购 自赛默飞世尔科技(中国)有限公司; Blue Plus[®] IV Protein Marker(10~180 ku)购自北京全式金生物技 术股份有限公司;DL5000 DNA Marker、ECL 化学发 光液购自南京诺唯赞生物科技股份有限公司;牛结核 分枝杆菌 BCG、pET32a 表达载体为石河子大学动物 科技学院人畜共患病实验室保存。新西兰大白兔(雌 性,约2kg)及兔粮购自石河子大学实验动物中心,于

兔笼中常规饲养。

1.2 主要仪器设备 PCR 仪购自杭州柏恒科技有限 公司;恒温细菌培养箱购自上海精宏实验设备有限公 司;恒温水浴锅购自沙鹰科学(上海)仪器有限公司;恒 温水平摇床购自上海智城分析仪器制造有限公司;核 酸电泳仪购自北京六一生物科技有限公司;紫外凝胶 成像系统购自北京森西赛智科技公司;化学发光凝胶 **1.3** 序列获取 牛结核分枝杆菌 BfrB 蛋白氨基酸序 列和编码序列来源于 GenBank 数据库中已公布的牛 结核分枝杆菌 AF2122/97(登录号:NC_002945.4)。

2 方法

2.1 BfrB 蛋白生物信息学分析 利用表 1 所示生物 信息学软件或网站对牛结核分枝杆菌 BfrB 蛋白氨基 酸序列及编码序列进行预测与分析。

	表	1	生物信息学分析软件	
Table	1	Bio	informatics analysis softwa	r

	Mile T District analysis sort are	功能
Name	Websites	Function
ORF Finder	https://www.ncbi.nlm.nih.gov/orffinder/	开放阅读框架
Protparam	https://web.expasy.org/protparam/	理化特性
TMH-MMServerv2.0	https://services. healthtech. dtu. dk/services/TMHMM-2. 0/	跨膜结构域
SignalP-5. 0Server	https://services. healthtech. dtu. dk/service. php? SignalP-5.0	信号肽
ProtScale	https://web. expasy. org/protscale/	亲疏水性
PONDR	http://pondr.com/	固定无序结构域
CD-search	https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi	保守结构域
Cell-PLoc 2.0	http://www.csbio.sjtu.edu.cn/bioinf/Gpos-multi/	亚细胞定位
SOPMA	https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl? page = npsa% 20_sopma.	二级结构
Phyre2	http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index	三级结构
SWISS-MODEL	https://swissmodel.expasy.org/	空间结构(四级结构)
IEDB	https://www.iedb.org/	B细胞抗原表位
NetMHCII-2.3	https://services.healthtech.dtu.dk/service.php? NetMHCII-2.3	(1)(十一)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)
NetMHCIIpan-4.1	https://services. healthtech. dtu. dk/service. php? NetMHCIIpan-4. 1	CD4 I 细胞免疫原性
NetCTL-1.2	https://services.healthtech.dtu.dk/service.php? NetCTL-1.2	CD8 ⁺ T细胞表位
NetPhos 3.1 Server	https://services.healthtech.dtu.dk/services/NetPhos-3.1/	磷酸化位点
NetNGlyc-1.0	https://services.healthtech.dtu.dk/service.php? NetNGlyc-1.0	糖基化位点
CSS-Palm	http://www.csspalm.biocuckoo.org/	甲基化和乙酰化位点
STRING	https://cn. string-db. org/	蛋白互作网络
UniProt	https://www.uniprot.org/	
HDOCK SERVER	http://hdock.phys.hust.edu.cn/	分子对接
Pymol 2.1	https://pymol. org/2/	
PDBsum Generate	http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html	蛋白结构模型评估

2.2 目的基因 PCR 扩增 设计针对 BfrB 蛋白编码 序列的引物(表 2),并以牛结核分枝杆菌 BCG 基因组 为模板进行 BfrB 蛋白编码基因的扩增,反应体系为:2 × Taq MasterMix 12.5 μ L、上下游引物各 1 μ L、基因 组 DNA 1 μ L 加 dd H₂O 补足到 25 μ L。反应程序为: 95 ℃ 5 min,94 ℃ 40 s、63.5 ℃ 30 s、72 ℃ 40 s(共 30 个循环),72 ℃ 5 min,4 ℃终止。PCR 扩增产物由 1.5%琼脂糖凝胶电泳进行观察分析并回收目的条带 于-20 ℃保存。

表 2	PCR 引物序列
Table 2	PCR primer sequence

引物名称 Primer name	序列(5'-3') Sequence	产物大小 (bp) Product size
BfrB-F	CCCAAGCTTATGACAGAATACGAA GGGCCTAA	546
BfrB-R	CCG <u>CTCGAG</u> CTAGAGGCGGCCCCCG	

注:下划线部分分别为 Hind III 和 Xho I 酶切位点。

2.3 目的基因克隆及测序 回收产物与克隆载体 pMD19-T Vector 于 16 ℃循环水浴锅过夜连接。连 接产物 pMD19-T-BfrB转化 DH5α 感受态细胞,并涂 布与 Amp 抗性 LB 固体培养基上,37 ℃恒温过夜培 养。次日挑取单克隆菌落进行 PCR 验证,阳性菌落委 托青岛睿博兴科生物技术有限公司测序。

2.4 表达载体构建 对测序正确的菌株进行质粒提 取,并利用 Hind Ⅲ和 Xho I 限制性内切酶进行双酶 切,琼脂糖凝胶电泳观察结果并回收酶切后目的条带, 在 T4 DNA 连接酶的作用下与已酶切表达载体 pET32a 连接,16 ℃循环水浴锅过夜连接。连接产物 pET32a-BfrB 转化 DE3 感受态细胞,并涂布与 Amp 抗性 LB 固体培养基上,37 ℃恒温过夜培养。次日挑 取单克隆菌落进行 PCR 验证,阳性菌落委托青岛睿博 兴科生物技术有限公司测序,提取测序正确的重组质 粒 pET32a-BfrB 进行双酶切验证,验证正确后获得 BfrB蛋白表达菌株大肠埃希菌 DE3 pET32a-BfrB。

2.5 BfrB蛋白表达纯化及 Western blot 分析 于 20 mL Amp 抗性 LB 液体培养基中活化表达菌株 DE3 pET32a-BfrB,培养至 A₆₀₀ 为 0.4~0.6 时,取 1 mL 做诱导前样品,剩余菌液按照 1:1 000 加入诱导剂 IPTG(终浓度为 1 mmol/L),15 ℃低温摇床过夜诱导。次日离心收菌并超声破碎,收集上清和沉淀并进行 SDS-PAGE 验证。镍柱亲和层析法获得纯化后重 组 BfrB 蛋白,SDS-PAGE 验证蛋白纯度。Western blot 分析重组 BfrB 蛋白反应原性,SDS-PAGE 电泳 后利用湿式转膜法将重组 BfrB 蛋白转印于 PVDF 膜上,5%脱脂奶粉封闭 2 h。以 1:1 000 稀释的免抗小鼠 IgG-HRP 抗体为二抗,室温孵育 1 h。最后向 PVDF 膜上滴加 ECL 化学发光液显色。

2.6 多克隆抗体的制备 以纯化后重组 BfrB 蛋白为 免疫原免疫新西兰大白兔,免疫前采集全血作阴性对 照。第一次免疫时重组 BfrB 蛋白与等体积弗氏完全 佐剂混合完全乳化后对新西兰大白兔皮下多点注射免 疫,免疫剂量为 800 μg;2 周后进行第二次免疫,免疫 剂量为 400 μg,与等体积弗氏不完全佐剂混合完全乳 化后,皮下多点注射;2 周后进行第三次免疫,免疫剂 量与程序同第二次免疫;第三次免疫后间隔 1 周耳中 动脉采血 2 mL 用于 ELISA 和 Western blot 检测;间 隔 1 周后进行第四次免疫,与弗氏不完全佐剂混合完 全乳化,免疫剂量 400 μg;间隔 3 d 后心脏采血,并收 集血清,用于 ELISA 和 Western blot 检测。

2.7 间接 ELISA 检测多克隆抗体效价 利用方阵滴 定法确定 BfrB 蛋白最佳包被浓度和一抗(血清)最佳 稀释浓度,BfrB 蛋白包被浓度分别为 1、1.5、2 和 2.5 μ g/mL,一抗稀释度分别为 1 : 1 000、1 : 2 000、1 : 4 000、1 : 8 000、1 : 16 000、1 : 32 000。确定 BfrB 蛋 白最佳包被浓度后利用间接 ELISA 方法检测多克隆 抗体效价,以 A₄₅₀ 阳性血清/A₄₅₀ 阴性血清(即 P/N) >2.1 的最大稀释倍数为抗体效价。

2.8 Western blot 鉴定多克隆抗体 纯化后 BfrB 蛋 白经 SDS-PAGE 电泳后利用湿式转膜法转印于 PVDF 膜上,5% 脱脂奶粉封闭 2 h。以制备的兔抗 BfrB 蛋白多克隆抗体(稀释度 1:200)作一抗,室温孵育 2 h。以1:3 000 稀释的山羊抗兔 IgG-HRP 抗体 为二抗,室温孵育 1 h。最后向 PVDF 膜上滴加 ECL 化学发光液显色。

结果

1 BfrB蛋白生物信息学分析

1.1 开放阅读框分析 BfrB蛋白编码基因全长 546

bp,位于牛结核分枝杆菌 AF2122/97 全基因组的 4 254 864-4 255 409 区域,开放阅读框分析显示,BfrB 蛋白编码基因共有 5 个开放阅读框,其 ORF1 为最长 开放阅读框,起始密码子是 ATG,终止密码子为 TAG,编码 181 个氨基酸,与目的蛋白全长一致,表明 该编码基因全长基本被翻译(图 1)。

图 1 BfrB 蛋白编码基因开放阅读框图谱 Fig. 1 Open reading frame map of BfrB protein coding gene

1.2 BfrB 蛋白的理化特性 通过 Protparam 在线软件预测分析 BfrB 蛋白的理化特性,该蛋白含有 181 个 氨基酸,分子式为 $C_{903}H_{1405}N_{255}O_{276}S_6$,总原子数为 2 845,理论分子质量为 20.442 ku,带负电荷的残基总数(天冬氨酸+谷氨酸)为 30,带正电荷的残基总数(精氨酸+赖氨酸)为 16,理论等电点为 4.73。消光系数为 11 460,吸光系数为 0.561。在体外哺乳动物网 织红细胞中半衰期为 30 h,酵母菌体内>20 h,大肠埃希菌中>10 h,不稳定性指数为 33.97(低于阈值 40),为稳定蛋白,脂溶性为 86.85%。BfrB 蛋白的氨基酸 组成如表 3 所示,其中丙氨酸(13.8%)、谷氨酸(9.9%)和异亮氨酸(9.9%)所占比例较大。

表 3 BfrB 蛋白的氨基酸组成 Table 3 Amino acid composition of BfrB protein

			1		
氨基酸残基 Amino acid residue	个数 Number	比例(%) Proportion	氨基酸残基 Amino acid residue	个数 Number	比例(%) Proportion
丙氨酸 Alanine	25	13.8	亮氨酸 Leucine	18	9.9
精氨酸 Arginine	13	7.2	赖氨酸 Lysine	3	1.7
天冬酰胺 Asparagine	5	2.8	甲硫氨酸 Methionine	6	3.3
天冬氨酸 Asparticacid	12	6.6	苯丙氨酸 Phenylalanine	10	5.5
半胱氨酸 Cysteine	0	0.0	脯氨酸 Proline	6	6.0
谷氨酰胺 Glutamine	14	7.7	丝氨酸 Serine	3	1.7
谷氨酸 Glutamicacid	18	9.9	苏氨酸 Threonine	8	4.4
甘氨酸 Glycine	9	5.0	色氨酸 Tryptophan	1	0.6
组氨酸 Histidine	6	3.3	酪氨酸 Tyrosine	4	2.2
异亮氨酸 Isoleucine	4	2.2	缬氨酸 Valine	16	8.8

1.3 BfrB蛋白跨膜结构域、信号肽、亲疏水性及固定 无序结构域分析 TMH-MMServerv2.0软件预测显 示 BfrB蛋白无跨膜区域(图 2A)。SignalP Server v. 5.0 信号肽分析软件预测显示 BfrB蛋白蛋白无信号 肽(图 2B)。ProtScale 软件预测 BfrB蛋白的亲疏水 性,亲、疏水性分别用负值、正值表示,发现在 86 位氨 基酸处亲水性最强,得分为-2.922,在 139 位氨基酸 处亲水性最弱,得分为1.922,亲水氨基酸总数大于疏 水氨基酸总数,总体上属于亲水性蛋白(图 2C)。 PONDR 固定无序结构域预测显示,BfrB蛋白有 3 个 固定无序结构域,分别为1-9、140-141、160-181 位的氨

图 2 BfrB 蛋白跨膜结构域(A),信号肽(B),亲疏水性(C) 及固有无序结构域(D) Fig. 2 BfrB protein transmembrane domain(A),signal peptide(B), hydrophilic(C) and intrinsic disordered domains(D)

1.4 BfrB 蛋白翻译后修饰位点预测 NetPhos 3.1 Server 预测磷酸化位点,预测结果显示 BfrB 蛋白有 3 个丝氨酸(Serine)磷酸化位点、8 个苏氨酸 (Threonine)磷酸化位点、4 个酪氨酸(Tyrosine)磷酸 化位点(图 3A)。NetNGIyc 1.0 Server 预测糖基化位 点,BfrB 蛋白无糖基化位点(图 3B)。CSS-Palm 分析 BfrB 蛋白的甲基化位点,有 16 个位点可能会发生甲 基化。CSS-Palm 预测 BfrB 蛋白的乙酰化位点,有 2 个乙酰化位点,分别为第 8 位、第 10 位的赖氨酸。

图 3 BfrB 蛋白磷酸化位点(A)和糖基化位点(B) Fig. 3 BfrB protein phosphorylation site(A) and glycosylation site(B)

1.5 BfrB蛋白保守结构域与亚细胞定位分析 通过 NCBI预测 BfrB蛋白的保守结构域,该蛋白属于非血 红素铁蛋白,是一种储铁蛋白,具有铁氧合酶活性,催 化 Fe²⁺离子氧化成 Fe³⁺离子,然后以氧化铁的形式将 铁沉积在蛋白质复合体的中央空腔中(图 4)。通过 Cell-PLoc 2.0 在线预测 BfrB蛋白的亚细胞定位,发 现 BfrB蛋白定位在牛结核分枝杆菌细胞质中。

图 4 BfrB 蛋白保守结构域分析 Fig. 4 Analysis of conserved domain of BfrB protein

1.6 BfrB 蛋白空间结构预测与评估 利用 SOPMA 软件预测 BfrB 蛋白的二级结构,结果显示 α -螺旋占 70.01%,延伸链占 4.42%, β -折角占 3.87%,无规则 卷曲占 21.55%,说明 α -螺旋为 BfrB 蛋白的二级结构 的主要形式(表 4)。利用 Phyre2 预测 BfrB 蛋白的三 级结构,其三级结构以 α -螺旋、延伸链、 β -折角及无规 则卷曲为主,与二级结构预测结果一致(图 5A)。利用 SWISS-MODEL 同源建模,结果显示 BfrB 蛋白的空 间结构(四级结构)是一种典型的八面对称的笼状聚合 物,由 24 个图 5B 所示的亚单位组成(图 5B)。拉氏图 (Ramachandran Plot)评估结果显示,该模型中 95% 的区域为最合理结构,5%的区域为一般合理结构,表 明该模型具有一定的可信度(图 5C)。

表 4 BfrB 蛋白二级结构预测 Table 4 Prediction of BfrB protein secondary structure

		^	•	
类型 Types	α-螺旋 α-helix	延伸链 Extended strand	β-折角 β-turn	无规则卷曲 Random coil
氨基酸数量	127	8	7	39
占比(%)	70.01	4.42	3.87	21.55

1.7 BfrB 蛋白 B 细胞表位和 T 细胞表位预测 IEDB 在线软件预测分析 BfrB 蛋白线性 B 细胞抗原 表位,有 9 个 B 细胞抗原表位见表 5。NetMHCII-2.3 和 NetMHCIIpan-4.1 预测 BfrB 蛋白 CD4⁺T 细胞表 位,得到 7 个 CD4⁺T 细胞抗原表位(表 6)。NetCTL-1.2 预测的 CD8⁺T 细胞表位有 3 个(表 7)。

1.8 BfrB蛋白进化树构建及蛋白相互作用网络分析 利用 MEGA 构建 BfrB蛋白 N-J 进化树,结果显示牛 结核分枝杆菌 AF2122/97 的 BfrB蛋白与牛结核分枝 杆菌 CG(M. bovis BCG)结核分枝杆菌 37Rv(M. tuberculosis H37Rv)坎纳分枝杆菌 M. canettii)BfrB 蛋白亲缘关系较近(图 6A)。采用 STRING 预测与 BfrB 相互作用的蛋白质,显示其与 Oxidase(氧化酶)、 rpsL(假定 30S 核糖体蛋白 S12)、katG(过氧化氢-过 氧化物酶)、hemH(铁螯合酶)等蛋白形成相互作用网 络(图 6B),互作关系强弱分值结果显示,BfrB 蛋白与 Oxidase 蛋白的相互作用最强。

1.9 BfrB与Oxidase蛋白的分子对接 分子对接结 果显示,BfrB蛋白与Oxidase蛋白的表面匹配较好

(图 7A),有利于形成稳定的结合作用。两个蛋白的结 合能为-248.03 Kcal•moL⁻¹,BfrB蛋白的结合位点包 括 GLN-27、ASP-68、GLY-178、HIS-175、TYR-49、 SER-50 等氨基酸残基,Oxidase 的结合位点包括 THR-66、LYS-266、GLN-269、GLN-190、TRP-191、 THR-70、ASN-90 等氨基酸残基。BfrB 与 Oxidase 蛋 白接触残基能够形成多种相互作用,如盐桥(ASP-68: LYS-266),氢键(GLN-27:THR-66,GLY-178:GLN-269,HIS-175:TRP-191,TYR-49:THR-70,SER-50: ASN-90),疏水性互作用等,这些相互作用可以有效地 提高的 BfrB蛋白与 Oxidase 蛋白形成复合物的稳定 性(图 7B)。

表 5 B 细胞抗原表位预测结果 Table 5 Results of B-cell epitope prediction

	14.511	1000000 01 2 000	threat historican
序号 No.	起始位点 Initiation site	终止位点 Termination site	表位肽段序列 Epitope peptide
1	5	10	EGPKTK
2	38	42	SEDLP
3	53	54	VE
4	56	57	RN
5	68	87	DRDLRVEIPGVDTVRNQFDR
6	101	101	Т
7	130	137	QEQIEEVA
8	148	155	RAGANLFE
9	161	178	AREVDVAPAASGAPHAAG

表 6 CD4⁺T细胞抗原表位分析结果

	Table 6 Results of epitop	e analysis of CD4 ⁺ T cells
序号	起始位点	表位肽段序列
No.	Initiation site	Epitope peptide
1	6	GPKTKFHALMQEQIH
2	7	PKTKFHALMQEQIHN
3	8	KTKFHALMQEQIHNE
4	9	TKFHALMQEQIHNEF
5	20	HNEFTAAQQYVAIAV
6	150	GANLFELENFVAREV
7	161	AREVDVAPAASGAPH

表 7 CD8⁺T 细胞抗原表位分析结果

_		Table 7 Results of	f CD8 ⁺ T-cell epitope an	alysis
	序号	起始位点	肽段序列	分数
	No.	Initiation site	Peptide sequence	Score
	1	15	MQEQIHNEF	0.8305
	2	77	GVDTVRNQF	0.8270
	3	102	VTDQVGRLT	0.7695

2 目的基因 PCR 扩增及克隆

BfrB 蛋白编码基因 PCR 扩增结果如图 8A 所示, 扩增产物大小与预期相符(546 bp)。菌液 PCR 结果 显示,8个单克隆菌落均为阳性克隆(图 8B),结合测 序结果,表明 BfrB 蛋白编码基因克隆成功。

图 6 BfrB 蛋白系统进化树(A)及蛋白相互作用网络分析(B) Fig. 6 Phylogenetic tree(A) and analysis of protein interaction network(B) of BfrB protein

Fig. 7 Surface model (A) and specific action site (B) between BfrB and Oxidase protein

A M1DNA Marker IIN 阴性对照 1~6 BfrB 蛋白编码基因 PCR 扩增产物 BM2100 bp Ladder N 阴性对照 1~8 阳性克隆 图 8 BfrB 蛋白编码基因(A)及克隆载体菌液 PCR 扩增结果(B)

A M1DNA Marker IINNegative control 1-6 PCR products of BfrB protein coding gene BM2100 bp Ladder N Negative control 1-8 Positive clone

Fig. 8 PCR results of BfrB protein coding gene(A) and cloning vector bacterial solution(B)

3 表达载体的构建与双酶切验证

表达载体菌液 PCR 结果如图 9A 所示,5 个单克 隆菌落均为阳性克隆。双酶切产物经琼脂糖凝胶电泳 分析,得到与预期大小相符的条带(546 bp)(图 9B)。 结果表明,目的基因已连接到表达载体 pET32a 中,表 达载体构建成功。

4 BfrB蛋白表达纯化及 Western blot 分析

表达菌株大肠埃希菌 DE3 pET32a-BfrB 经 IPTG 低温过夜诱导后, SDS-PAGE 凝胶电泳可见约 37.64 ku(含 Trx 和 His 标签)的特异性条带,其分子质量与 重组质粒表达蛋白的分子质量相当。超声破碎后发现 重组蛋白 BfrB 在上清中的表达量最大,经镍柱纯化法 纯化,获取 纯度 较高的 重组 蛋白 BfrB(图 10A)。 Western blot 验证分析,重组蛋白 BfrB 能与小鼠抗 His 的一抗特异性结合(图 10B)。

5 间接 ELISA 检测多克隆抗体效价

通过方阵滴定法确定蛋白包被浓度在 1.5 μg/ mL, --抗(血清)稀释度为 1:2000 时 P/N 值最大(表 8)。通过倍比稀释--抗(血清)进行效价分析,结果显示,在--抗稀释度为 1:512 000 时 P/N 值为 3.56 大 于 2.1, 当--抗稀释度为 1:1 024 000 时 P/N 值为

1.87 小于 2.1(图 11),因此可以确定 BfrB 蛋白多克 隆抗体效价为 1:512 000。

A M1100 bp1~5 阳性克隆 N 阴性对照 B M2DL5000 DNA Markerl 双酶切产物 2pET32a-BfrB 重组质粒

图 9 表达载体菌液 PCR(A)及双酶切验证(B)

A M1100 bp1-5Positive clone N negative control B M2DL5000 DNA Marker1 Double digestion product 2pET32a -BfrB recombinant plasmid

Fig. 9 Verification of expression vector bacterial broth PCR and double enzyme digestion

A M1蛋白分子质量标准(10~180 ku) 1 pET32a诱导(空载体) 2 诱导前 3 诱导后 4 诱导后超声破碎沉淀 5 诱导后超声破碎上清 6 超声破碎后样品 7 流出 8、9 纯化后蛋白 B
M2Blue Plus[©] IV Protein Marker (10-180 ku) 10 纯化后 BfrB 蛋白 图 10 BfrB蛋白表达纯化及 Western blot 鉴定

A M1 Protein Marker (10-180 ku) 1 pET32a induction (Empty vector) 2 Before induction 3 After induction 4 Precipitation after induced ultrasonic disruption 5 Supernatant after induced ultrasonic fragmentation 6 Sample after ultrasonic disruption 7 Outflow 8,9 Purified protein B M2Blue Plus[©] IV Protein Marker (10-180 ku) 10 Purified BfrB protein

Fig. 10 Identification of BfrB protein expression and purification and Western blot

表 8	方阵滴定结果(P/N)
Table 8	Square titration results

血清稀释度 Serum	蛋白包被浓度 Protein coating concentrations				
dilutions	$1 \ \mu g/mL$	$1.5 \ \mu g/mL$	$2 \ \mu g/mL$	2.5 μ g/mL	
1 : 1000	38.24	43.79	42.08	26.42	
1 : 2000	42.93	44.98	39.83	30.02	
1 : 4000	37.82	40.45	43.06	27.47	
1 : 8000	41.06	43.06	39.93	30.51	
1:16000	38.70	39.49	36.48	28.35	
1:32000	32.88	32.41	29.94	24.41	

6 Western blot 鉴定多克隆抗体

纯化后 BfrB 蛋白转印于 PVDF 膜上,以兔多克 隆抗体为一抗,山羊抗兔 IgG-HRP 为二抗,ECL 发光 液显色,在 37.64 ku 左右出现目的条带(图 12),表明 兔血清中含有抗 BfrB 蛋白的多克隆抗体,因而能与 BfrB 蛋白特异性结合,证明 BfrB 蛋白多克隆抗体制 备成功。

M Blue Plus[©] IV Protein Marker (10-180 ku) 1 纯化 BfrB 蛋白 图 12 BfrB 蛋白多克隆抗体的 Western blot 鉴定

M Blue Plus $^{\ensuremath{\mathbb{C}}}$ IV Protein Marker (10-180 ku) 1 Purified BfrB protein

Fig. 12 Identification of BfrB protein Western blot

讨论

在全球,结核病是一种对动物和人类构成严重威胁的疾病。患有结核病的动物可能是其他动物和人类的感染源^[12],因此,了解牛结核分枝杆菌的发病机制对于控制结核病在人类、家畜和野生动物中的传播至关重要^[13]。铁对病原菌维持正常生命活动、生长发育、致病性等具有重要作用^[14],如金黄色葡萄球菌利用血红素摄取系统和两个高亲和力的铁吸收载体葡萄铁蛋白 A 和 B 来获取铁元素以维持基本生命活动并

发挥毒力作用^[15]。布鲁氏菌中存在的铁反应调节子 (irr)和铁调节剂(rirA)可调控布鲁氏菌对铁元素的摄 取,并且 irr 基因和 rirA 基因缺失的布鲁氏菌其致病 力和血红素的合成均受到显著影响^[16]。铁摄取基因 缺失的沙门氏菌,其铁来源受阻,在感染小鼠时其致病 力显著降低^[17]。另有研究表明,缺失铁调节 ABC 转 运蛋白的结核分枝杆菌会丧失在巨噬细胞和小鼠体内 的增殖能力^[18]。

在人结核分枝杆菌中,BfrB蛋白已被证明在铁元 素的储存、维持铁稳态、致病性等方面发挥了重要作 用^[10]。因此,本研究以牛结核分枝杆菌 BfrB 蛋白为 研究对象,对其进行生物信息学分析、克隆表达及多克 隆抗体的制备。BfrB蛋白由 181 个氨基酸组成,是一 种亲水性的非分泌蛋白,无跨膜结构域、信号肽。研究 表明,固有无序蛋白与病原菌的致病性密切相关^[19], 单增李斯特菌 ActA 蛋白含有多个固定无序结构域, 该结构域的存在有利于 ActA 蛋白能够穿过单增李斯 特菌细胞壁的孔径,为单增李斯特菌的转移提供动力, 推动细胞内单增李斯特菌的移动和细胞与细胞之间单 增李斯特菌的扩散^[20]。本研究预测发现 BfrB 蛋白含 有3个固有无序结构域,可能也具有单增李斯特菌 ActA 蛋白类似的功能。BfrB 蛋白亚细胞定位和保守 结构域预测分析表明,该蛋白定位于细胞质,是一种以 氧化铁的形式将铁元素存储在蛋白质复合体中央空腔 的储铁蛋白。在 BfrB 蛋白中,α-螺旋、延伸链、β-折角 及无规则卷曲参与构成其二级结构,BfrB蛋白四级结 构预测模型是一种典型的八面对称的笼状聚合物,由 24 个亚单位组成,与 BfrA 蛋白具有极其相似的空间 结构,这种中空的结构能更好的储存铁并维持铁稳 态^[21]。但与 BfrA 不同的是,BfrB 蛋白中空间结构外 部和内部排列着带负电荷的残基,这有利于吸附 Fe²⁺ 等带正电离子,Fe²⁺进入笼状结构中后,通过收缩该 笼状结构以实现铁的快速吸收和氧化^[9,22]。

细菌蛋白翻译后直接进行有目的的修饰,以实现 修饰后蛋白在细菌中快速、高效利用,对细菌快速适应 环境及蛋白发挥功能至关重要^[23]。蛋白质磷酸化修 饰被认为是调节蛋白质功能的普遍机制,在真核生物 和原核生物中主要有3种氨基酸可发生磷酸化修饰, 即丝氨酸、苏氨酸和酪氨酸^[24-25]。本研究显示 BfrB 蛋白也存在多个磷酸化位点,这些位点的氨基酸为丝 氨酸、苏氨酸和酪氨酸。赖氨酸乙酰化是一种丰富的 蛋白质翻译后修饰方式,可以改变蛋白质构象、蛋白 质-蛋白质相互作用及蛋白质定位等^[26]。对病原菌而 言,蛋白乙酰化修饰对其致病性具有重要作用^[27]。研 究表明,结核分枝杆菌 cAMP 结合效应蛋白(cAMP receptor protein,CRP)的第 139 位赖氨酸乙酰化修饰

后会导致 CRP 丧失与其靶 DNA 结合的能力,直接影 响了结核分枝杆菌的存活和致病性[28]。本研究预测 结果显示牛结核分枝杆菌 BfrB 蛋白的第8位和第10 位的赖氨酸可能会发生乙酰化修饰,因而可推测 BfrB 蛋白乙酰化修饰后可能会影响牛结核分枝杆菌的存活 及致病性。伤寒立克次体 OmpB 蛋白的多个甲基化 位点被甲基转移酶 RP027-28 和 RP0789 进行 N-甲基 化修饰后,可影响立克次体的毒力,并且 OmpB 蛋白 甲基化水平与毒力之间存在相关性[29]。另外,问号钩 端螺旋体 OmpL32 蛋白中有 11 个位点可发生 Glx (Glu/Gln)甲基化,对这些位点分析表明,含有 Glx 甲 基化的区域与潜在的抗原表位相关,这表明甲基化可 能有助于问号钩端螺旋体感染期间的免疫逃避^[30]。 本研究分析显示 BfrB 蛋白有 16 个可能发生甲基化的 位点,暗示甲基化修饰后的 BfrB 蛋白可能有助于牛结 核分枝杆菌的免疫逃逸。

B细胞和T细胞抗原表位预测发现BfrB蛋白有 多个优势抗原表位,可能会有良好的免疫原性,这将有 利于新型疫苗、诊断或药物靶点的开发以及更好的了 解BfrB蛋白在致病机制中所发挥的作用。牛结核分 枝杆菌BfrB蛋白与牛结核分枝杆菌BCG、结核分枝 杆菌H37Rv等的亲缘关系较近,同源性高达99%以 上。在结核分枝杆菌中,BfrB与BfrA在氧化酶的作 用下将游离的、过量的铁以氧化铁的形式储存起来,以 保护结核分枝杆菌免受游离铁过量介导的氧化应 激^[7]。与BfrB蛋白存在相互作用的多个蛋白中, Oxidase(氧化酶)与BfrB蛋白的相互作用最强,通过 分子对接分析,这两个蛋白的氨基酸残基之间通过形 成盐桥、氢键和疏水键等来实现稳定的连接和相互作 用,这种相互作用能够在高浓度游离铁的条件下保护 该病原体并摄取和储存多余的铁以保证其存活。

先前的研究表明,结核分枝杆菌侵入动物体内后 会引发各种抗原的抗体产生,因此,利用血清学方法诊 断结核病已被广泛研究和应用^[31-32]。本研究以重组 BfrB蛋白为免疫原免疫新西兰大白兔获得兔抗 BfrB 蛋白多克隆抗体,其效价达1:512 000,说明该蛋白具 有良好的免疫原性。有研究表明,结核分枝杆菌 BfrB 蛋白是一种分泌蛋白,可分泌到菌体外与宿主发生相 互作用,因而具有成为结核病血清学检测的潜在优势 靶点^[33]。Western blot鉴定结果显示,纯化后的 BfrB 蛋白能够与小鼠抗 His 单克隆抗体或制备的兔抗 BfrB蛋白多克隆抗体结合,证明 BfrB 蛋白具有良好 的反应原性。

综上所述,通过对牛结核分枝杆菌 BfrB 蛋白生物 信息学分析、表达纯化及多克隆抗体制备等研究,为后 续 BfrB 蛋白作为诊断靶标和有效疫苗的研究提供理

论支持,也为牛结核病的预防、诊断与流行病学调查提供参考依据。

【参考文献】

- [1] Inlamea OF, Soares P, Ikuta CY, et al. Evolutionary analysis of Mycobacterium bovis genotypes across Africa suggests coevolution with livestock and humans[J]. PLoS Neg Trop Dis, 2020,14(3):e0008081.
- [2] Esmaeilzadeh N, Bahonar A, Rahimi FA, et al. Temporal trends and prediction of bovine tuberculosis: a time series analysis in the North-East of Iran[J]. Iran J Vet Res, 2022, 23(1):12-17.
- [3] Ncube P, Bagheri B, Goosen WJ, et al. Evidence, challenges, and knowledge gaps regarding latent Tuberculosis in animals [J]. Microorganisms, 2022, 10(9):1845.
- [4] Refaya AK, Bhargavi G, Mathew NC, et al. A review on bovine tuberculosis in India [J]. Tuberculosis (Edinb), 2020, 122: 101923.
- [5] Song YH, Li D, Zhou Y, et al. Prevalence of bovine tuberculosis in yaks between 1982 and 2020 in mainland China: A systematic review and meta-analysis[J]. Vector-Borne Zoonotic Dis, 2021, 21(6):397-405.
- [6] Taye H, Alemu K, Mihret A, et al. Global prevalence of Mycobacterium bovis infections among human tuberculosis cases: systematic review and meta-analysis[J]. Zoonoses Public Health, 2021,68(7):704-718.
- [7] Khare G, Nangpal P, Tyagi AK. Differential roles of iron storage proteins in maintaining the iron homeostasis in *Mycobacterium tuberculosis*[J]. PLoS One, 2017, 12(1):e0169545.
- [8] Pandey R, Rodriguez GM. A ferritin mutant of Mycobacterium tuberculosis is highly susceptible to killing by antibiotics and is unable to establish a chronic infection in mice[J]. Infect Immun, 2012,80(10):3650-3659.
- [9] Parida A, Mohanty A, Kansara BT, et al. Impact of phosphate on iron mineralization and mobilization in nonheme bacterioferritin B from Mycobacterium tuberculosis [J]. Inorg Chem, 2020, 59(1): 629-641.
- [10] Mohanty A, Subhadarshanee B, Barman P, et al. Iron mineralizing bacterioferritin a from Mycobacterium tuberculosis exhibits unique catalase-Dps-like dual activities[J]. Inorg Chem, 2019.58(8):4741-4752.
- [11] Garcia-Morales L, Leon-Solis L, Monroy-Munoz IE, et al. Comparative proteomic profiles reveal characteristic Mycobacterium tuberculosis proteins induced by cholesterol during dormancy conditions [J]. Microbiology (Reading), 2017,163(8):1237-1247.
- [12] Sichewo PR, Vander Kelen C, Thys S, et al. Risk practices for bovine tuberculosis transmission to cattle and livestock farming communities living at wildlife-livestock-human interface in northern KwaZulu Natal, South Africa[J]. PLoS Negl Trop Dis,2020,14(3):e0007618.
- [13] Ramos DF, Silva PE, Dellagostin OA. Diagnosis of bovine tuberculosis:review of main techniques[J]. Braz J Biol,2015, 75(4):830-837.
- [14] Karash S, Jiang T, Kwon YM. Genome-wide characterization of

SalmonellaTyphimurium genes required for the fitness under iron restriction[J]. BMC Genomic Data,2022,23(1):55.

- [15] Conroy BS, Grigg JC, Kolesnikov M, et al. Staphylococcus aureus heme and siderophore-iron acquisition pathways [J]. Biometals, 2019, 32(3):409-424.
- [16] Zhang H, Wang B, Wu W, et al. Insights into irr and rirA gene regulation on the virulence of *Brucella melitensis* M5-90[J]. Can J Microbiol, 2020, 66(5):351-358.
- [17] Tan Z, Chekabab SM, Yu H, et al. Growth and virulence of Salmonella typhimurium mutants deficient in iron uptake[J]. ACS Omega, 2019, 4(8): 13218-13230.
- [18] Rodriguez GM, Sharma N, Biswas A, et al. The iron response of Mycobacterium tuberculosis and its implications for tuberculosis pathogenesis and novel therapeutics [J]. Front Cell Infect Microbiol, 2022, 12:876667.
- [19] 彭斌,谭文甫,何敏,等.金黄色葡萄球菌脂蛋白 SAOUHSC_ 02650 生物信息学分析及多克隆抗体的制备[J].中国病原生 物学杂志,2022,17(3):288-292.
- [20] Halladin DK, Ortega FE, Ng KM, et al. Entropy-driven translocation of disordered proteins through the gram-positive bacterial cell wall[J]. Nat Microbiol,2021,6(8):1055-1065.
- [21] Gijsbers A, Zhang Y, Gao Y, et al. Mycobacterium tuberculosis ferritin: a suitable workhorse protein for cryo-EM development
 [J]. Acta Crystallogr D, 2021, 77(Pt 8):1077-1083.
- [22] Khare G, Gupta V, Nangpal P, et al. Ferritin structure from Mycobacterium tuberculosis: comparative study with homologues identifies extended C-terminus involved in ferroxidase activity[J]. PLoS One,2011,6(4):e18570.
- Reverdy A, Chen Y, Hunter E, et al. Protein lysine acetylation plays a regulatory role in *Bacillus subtilis* multicellularity[J]. PLoS One,2018,13(9):e0204687.
- [24] Yague P, Gonzalez-Quinonez N, Fernanez-Garcia G, et al. Goals and challenges in bacterial phosphoproteomics[J]. Int J Mol Sci,2020,21(24):9381.
- [25] 尹德琦,魏子巍,张义伟,等. 弓形虫蛋白质翻译后修饰研究进展 [J]. 畜牧兽医学报,2021,52(11);2995-3005.
- [26] Wang MM, You D, Ye BC. Site-specific and kinetic characterization of enzymatic and nonenzymatic protein acetylation in bacteria[J]. Sci Rep, 2017, 7(1):14790.
- [27] 钟文红,陈涛涛,欧阳松应. 乙酰化修饰在嗜肺军团菌致病过程 中的作用[J]. 生物化学与生物物理进展,2023,50(5):1088-1098.
- [28] Di Y, Xu S, Chi M, et al. Acetylation of Cyclic AMP receptor protein by acetyl phosphate modulates Mycobacterial virulence [J]. Microbiol Spectrum, 2023, 11(1):e0400222.
- [29] Cain JA, Solis N, Cordwell SJ. Beyond gene expression: the impact of protein post-translational modifications in bacteria [J]. J Proteomics, 2014, 97:265-286.
- [30] Eshghi A, Pinne M, Haake DA, et al. Methylation and in vivo expression of the surface-exposed *Leptospira interrogans* outer-membrane protein OmpL32[J]. Microbiology,2012,158 (3):622-635.
- [31] Jacobs R, Awoniyi DO, Baumann R, et al. Concurrent evaluation of cytokines improves the accuracy of antibodies against *Mycobacterium tuberculosis* antigens in the diagnosis of active tuberculosis[J]. Tuberculosis (Edinb), 2022, 133: 102169.
- [32] Casadevall A. Antibodies to Mycobacterium tuberculosis[J]. N Engl J Med, 2017, 376(3):283-285.
- [33] He X, Jiang HW, Chen H, et al. Systematic identification of Mycobacterium tuberculosis effectors reveals that BfrB suppresses innate Immunity[J]. Mol Cell Proteomics, 2017, 16 (12):2243-2253.

【收稿日期】 2023-10-30 【修回日期】 2024-01-14